Skip to main content Skip to main navigation menu Skip to site footer

Preliminary study: the future insight of relationship between nutrigenomic risk and sepsis

  • Anna Surgean Veterini ,
  • Bambang Pujo Semedi ,
  • Prananda Surya Airlangga ,
  • Purwo Sri Rejeki ,
  • Khildan Miftahul Firdaus ,
  • Airi Mutiar ,
  • Annis Catur Adi ,
  • Rauzan Sumara ,
  • Rizky Fajar Meirawan ,

Abstract

Link of Video Abstract: https://youtu.be/K5y8Rmm7JZk

 

Introduction: In field observations, we frequently encountered cases of sepsis at a young age and rarely in older individuals. Most cases are caused by a bacterial infection, which causes pneumonia that progresses to septic shock. There are several possible causes of infection and subsequent septic shock. Among these, certain genetic code abnormalities cause disturbances in nutrient metabolism, which facilitates the emergence of infections. This study aimed to explore the nutrigenomic patterns in patients with septic shock.

Methods: Nutrigenomic examination was performed at the General Academic Hospital in Surabaya, Indonesia, to determine the micronutrient genotype risk in patients with septic shock. We compared cases of septic shock with control groups containing normal subjects to identify a unique pattern in the nutrigenomic results between these two groups. DNA testing was in collaboration with Nutrigenme, using saliva and buccal swabs. The data were analyzed using the chi-square test and all statistical analyses were performed using the R statistics software.

Results: The results of the saliva testing demonstrated that there was an endurance ultra-risk category (PGC1a, rs8192678; genotype GG) in the control group; however, this category was not observed in the case group. In addition, the genomic risk of vitamin C was elevated in the septic shock group (Group A) but was typical in the control group (Group B).

Conclusion: We observed a deletion in GSTT1 rs2266633 in the sepsis group, which may play a role in the development of sepsis. Furthermore, we discovered that the control group exhibited an ultra-type risk for endurance, suggesting that the ability to extract oxygen and frequent exercise may play a role in limiting disease development.

References

  1. Springmann M, Wiebe K, Mason-D’Croz D, Sulser TB, Rayner M, Scarborough P. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: a global modelling analysis with country-level detail. Lancet Planet Heal. 2018;2(10):451–61.
  2. Gabbianelli R, Damiani E. Epigenetics and neurodegeneration: role of early-life nutrition. J Nutr Biochem. 2018;57:1–13.
  3. Bordoni L, Gabbianelli R. Primers on nutrigenetics and nutri(epi)genomics: Origins and development of precision nutrition. Biochimie. 2019;160:156–71.
  4. Howell MD, Davis AM. Management of sepsis and septic shock. JAMA - J Am Med Assoc. 2017;317(8):847–8.
  5. Petracci I, Gabbianelli R, Bordoni L. The role of nutri(EPI)genomics in achieving the body’s full potential in physical activity. Antioxidants. 2020;9(6):1–33.
  6. Bordoni L, Petracci I, Zhao F, Min W, Pierella E, Assmann TS, et al. Nutrigenomics of dietary lipids. Antioxidants 2021;10(7):994.
  7. Fleischmann C, Scherag A, Adhikari NK, Hartog CS. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. American journal of respiratory and critical care medicine. 2016;193(3):259-72.
  8. Ferland-Mccollough D, Fernandez-Twinn DS, Cannell IG, David H, Warner M, Vaag AA, et al. Programming of adipose tissue miR-483-3p and GDF-3 expression by maternal diet in type 2 diabetes. Cell Death Differ. 2012;19(6):1003–12.
  9. Sharma P, Dwivedi S. Nutrigenomics and nutrigenetics: New insight in disease prevention and cure. Indian J Clin Biochem. 2017;32(4):371–3.
  10. Lietz G, Oxley A, Leung W, Hesketh J. Single nucleotide polymorphisms upstream gene influence provitamin A conversion efficiency in female volunteers. J Nutr. 2012;142:161S-5S
  11. Binia A, Siegwald L, Sultana S, Shevlyakova M, Lefebvre G, Foata F, et al. The influence of FUT2 and FUT3 polymorphisms and nasopharyngeal microbiome on respiratory infections in breastfed Bangladeshi infants from the microbiota and health study. mSphere. 2021;6(6): e0068621.
  12. Rupp C, Friedrich K, Folseraas T, Wannhoff A, Bode KA, Weiss KH, et al. Fut2 genotype is a risk factor for dominant stenosis and biliary candida infections in primary sclerosing cholangitis. Aliment Pharmacol Ther. 2014;39(8):873–82.
  13. Barton SJ, Murray R, Lillycrop KA, Inskip HM, Harvey NC, Cooper C, et al. FUT2 genetic variants and reported respiratory and gastrointestinal illnesses during infancy. J Infect Dis. 2019;219(5):836–43.
  14. Ahluwalia TS, Eliasen AU, Sevelsted A, Pedersen CT, Stokholm J, Chawes B, et al. FUT2–ABO epistasis increases the risk of early childhood asthma and Streptococcus pneumoniae respiratory illnesses. Nat Commun. 2020;11(1): 6398.
  15. Saadat M. An evidence for correlation between the glutathione S-transferase T1 (GSTT1) polymorphism and outcome of COVID-19. Clin Chim Acta. 2020;508:213–6.
  16. Rojo-Tolosa S, Márquez-Pete N, Gálvez-Navas JM, et al. Single nucleotide polymorphisms in the vitamin D metabolic pathway and their relationship with high blood pressure risk. Int J Mol Sci. 2023;24(6):5974.
  17. Araújo EP dos S, Lima SCV da C, Galdino OA, Arrais RF, de Souza KSC, de Rezende AA. Association of CYP2R1 and VDR polymorphisms with metabolic syndrome components in non-diabetic Brazilian adolescents. Nutrients. 2022;14(21): 4612.
  18. Slater NA, Rager ML, Havrda DE, Harralson AF. Genetic variation in CYP2R1 and GC genes associated with vitamin D deficiency status. Journal of Pharmacy Practice. 2016;30(1):31–6.
  19. Yang J jing, Fan H zhi, Tian T, Wu MP, Xie CN, Huang P, et al. Impact of CYP2R1, CYP27A1 and CYP27B1 genetic polymorphisms controlling vitamin D metabolism on susceptibility to hepatitis C virus infection in a high-risk Chinese population. Arch Virol [Internet] 2019;164(12):2909–18.
  20. Zhao T, Zhang D, Liu Y, Feng M, Xu Z, Huang H, et al. The association between GC gene polymorphisms and metabolic syndrome in Chinese rural population: A case–control study. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 2022;5:165–74.
  21. Kambur O, Männistö PT. Catechol-O-Methyltransferase and Pain. Basic aspects of catechol-o-methyltransferase and the clinical applications of its inhibitors. Int Rev Neurobiol. 2010;95:227-79.
  22. Tammimäki A, Männistö PT. Catechol-O-methyltransferase gene polymorphism and chronic human pain: A systematic review and meta-analysis. Pharmacogenet Genomics. 2012;22(9):673–91.
  23. Liu J, Wu J, Nie G, Zenf W, Zhang M, Tan L, et al. Catechol-O-methyl transferase SNP rs4680 influence risk of mood disorder: A meta-analysis. Int J Clin Exp Med. 2016;9(3):6152–65.
  24. Guinotte CL, Burns MG, Axume JA, Hata H, Urrutia TF, Alamilla A, et al. Methylenetetrahydrofolate reductase 677C→T variant modulates folate status response to controlled folate intakes in young women. J Nutr. 2003;133(5):1272–80.
  25. Undas A, Chojnowski K, Klukowska A, Łętowska M, Mital A, Młynarski W, et al. Determination and interpretation of MTHFR gene mutations in gynecology and internal medicine. Pol Arch Intern Med. 2019;129(10):728–32.
  26. Han Z, Sheng H, Gao Q, Fan Y, Xie X. Associations of the mthfr rs1801133 polymorphism with gastric cancer risk in the Chinese han population. Biomed Reports. 2021;14(1):1–7.
  27. Raghubeer S, Matsha TE. Methylenetetrahydrofolate (Mthfr), the one-carbon cycle, and cardiovascular risks. Nutrients. 2021;13(12).
  28. Jiang J, Zhang Y, Wei L, Sun Z, Liu Z. Association between MTHFD1 G1958A polymorphism and neural tube defects susceptibility: A meta-analysis. PLoS One. 2014;9(6): e101169.
  29. Khatami M, Ratki FM, Tajfar S, Akrami F. Relationship of the MTHFD1 (rs2236225), eNOS (rs1799983), CBS (rs2850144) and ACE (rs4343) gene polymorphisms in a population of Iranian pediatric patients with congenital heart defects. Kaohsiung J Med Sci. 2017;33(9):442–8.
  30. Costa K-A, Kozyreva OG, Song J, Galanko JA, Fischer LM, Zeisel SH. Common genetic polymorphisms affect the human requirement for the nutrient choline. FASEB J. 2006;20(9):1336–44.
  31. Hidalgo-Bravo A, Rivera-Paredez B, León-Reyes G, Patiño N, Castillejos-López M, Salmerón J, et al. Unravelling the contribution of the rs7041 and rs4588 polymorphisms of the GC gene and serum VDBP levels for developing metabolic syndrome in the Mexican population. Int J Mol Sci. 2022;23(18):10581.
  32. Pichler I, Minelli C, Sanna S, Tanaka T, Schwienbacher C, Naitza S, et al. Identification of a common variant in the TFR2 gene implicated in the physiological regulation of serum iron levels. Hum Mol Genet. 2011;20(6):1232–40.
  33. Nicolas G, Chauvet C, Viatte L, et al. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest. 2002;110(7):1037–44.
  34. Gupta Y, Maciorowski D, Medernach B, Danan JL, Bigard X, Devaux I, et al. Iron dysregulation in COVID-19 and reciprocal evolution of SARS-CoV-2: Natura nihil frustra facit. J Cell Biochem 2022;123(3):601–619.
  35. Mohd Atan FNE, Wan Mohd Saman WA, Kamsani YS, Khalid Z, Abdul Rahman A. TMPRSS6 gene polymorphisms associated with iron deficiency anaemia among global population. Egypt J Med Hum Genet. 2022;23(1):1–16.
  36. An P, Wu Q, Wang H, Guan Y, Mu M, Liao Y, et al. TMPRSS6, but not TF, TFR2 or BMP2 variants are associated with increased risk of iron-deficiency anemia. Hum Mol Genet. 2012;21(9):2124–31.
  37. Chin EL, Huang L, Bouzid YY, Kirschke CP, Durbin-Johnson B, Baldiviez LM, et al. Association of lactase persistence genotypes (Rs4988235) and ethnicity with dairy intake in a healthy u.s. population. Nutrients. 2019;11(8):1–23.
  38. Gödde R, Rohde K, Becker C, Toliat MR, Entz P, Suk A, et al. Association of the HLA region with multiple sclerosis as confirmed by a genome screen using >10,000 SNPs on DNA chips. J Mol Med. 2005;83(6):486–94.
  39. Autissier P, Soulas C, Burdo TH, Williams KC. Evaluation of a 12-color flow cytometry panel to study lymphocyte, monocyte, and dendritic cell subsets in humans. Cytom Part A. 2010;77(5):410–9.
  40. Bao L, Li J, Hu S, Wu X. Association between the HLA-DQA1 rs2187668 polymorphism and risk of idiopathic membranous nephropathy A PRISMA-compliant meta-analysis. Med (United States). 2018;97(44):1–9.
  41. Lund F, Hermansen MN, Pedersen MF, Hillig T, Toft-Hansen H, Sölétormos G. Mapping of HLA- DQ haplotypes in a group of Danish patients with celiac disease. Scand J Clin Lab Invest. 2015;75(6):519–22.
  42. Barker JM, Triolo TM, Aly TA, Baschal EE, Babu SR, Kretowski A, et al. Two single nucleotide polymorphisms identify the highest-risk diabetes HLA genotype; Potential for rapid screening. Diabetes. 2008;57(11):3152–5.
  43. Negro F, Verdoia M, Nardin M, Suryapranata H, Kedhi E, Dudek D, et al. Impact of the polymorphism RS5751876 of the purinergic receptor ADORA2A on periprocedural myocardial infarction in patients undergoing percutaneous coronary intervention. J Atheroscler Thromb. 2021;28(2):137–45.
  44. Cornelis MC, El-Sohemy A, Kabagambe EK, Campos H. Coffee, CYP1A2 genotype, and risk of myocardial infarction. JAMA. 2006;295(10):1135.
  45. Hou CC, Tantoh DM, Lin CC, Chen PH, Yang HJ, Liaw YP. Association between hypertension and coffee drinking based on CYP1A2 rs762551 single nucleotide polymorphism in Taiwanese. Nutr Metab. 2021;18(1):1–8.
  46. Gomathinayagam R, Velayutham K, Ramanathan B, Murugan J, Murugan A, Thavamani V. Carriers of the TCF7L2 rs7903146, rs12255372 risk alleles in the south Tamil Nadu T2DM patients present with early incidence and insulin dependence. Indian Journal of Endocrinology and Metabolism. 2019;23(5):563.
  47. Hosseinpour-Niazi S, Bakhshi B, Zahedi AS, Akbarzadeh M, Daneshpour MS, Mirmiran P, et al. TCF7L2 polymorphisms, nut consumption, and the risk of metabolic syndrome: a prospective population based study. Nutr Metab. 2021;18(1):1–11.
  48. Nanfa D, Sobngwi E, Atogho‐Tiedeu B, Noubiap JJ, Donfack OS, Mofo EP, et al. Association between the TCF7L2 rs12255372 (G/T) gene polymorphism and type 2 diabetes mellitus in a Cameroonian population: a pilot study. Clin Transl Med. 2015;4(1):1–5.
  49. Elhourch S, Arrouchi H, Mekkaoui N, Allou Y, Ghrifi F, Allam L, et al. Significant association of polymorphisms in the tcf7l2 gene with a higher risk of type 2 diabetes in a moroccan population. J Pers Med 2021;11(6):461.
  50. Cornelis MC, Qi L, Kraft P, Hu FB. TCF7L2, dietary carbohydrate, and risk of type 2 diabetes in US women. Am J Clin Nutr. 2009;89(4):1256–62.
  51. del Bosque-Plata L, Hernández-Cortés EP, Gragnoli C. The broad pathogenetic role of TCF7L2 in human diseases beyond type 2 diabetes. J Cell Physiol. 2022;237(1):301–12.
  52. Shokouhi S, Delpisheh A, Haghani K, Mahdizadeh M, Bakhtiyari S. Association of rs7903146, rs12255372, and rs290487 polymorphisms in TCF7L2 gene with type 2 diabetes in an Iranian Kurdish ethnic group. Clinical Laboratory. 2014;60(8): 1269-76.
  53. Dieterle ME, Haslwanter D, Bortz RH, Wirchnianski AS, Lasso G, Vergnolle O, et al. A Replication-competent vesicular stomatitis virus for studies of SARS-CoV-2 spike-mediated cell entry and its inhibition. Cell Host Microbe. 2020;28(3):486-96.e6.
  54. Alimoradi N, Sharqi M, Firouzabadi D, Sadeghi MM, Moezzi MI, Firouzabadi N. SNPs of ACE1 (rs4343) and ACE2 (rs2285666) genes are linked to SARS-CoV-2 infection but not with the severity of disease. Virol J. 2022;19(1):1–9.
  55. Bäck M, Xhaard C, Rouget R, Thuillier Q, Plunde O, Larsson SC, et al. Fatty acid desaturase genetic variations and dietary omega-3 fatty acid intake associate with arterial stiffness. Eur Hear J Open 2022;2(2): oeac016.
  56. Yuan S, Bäck M, Bruzelius M, Mason AM, Burgess S, Larsson S. Plasma phospholipid fatty acids, FADS1 and risk of 15 cardiovascular diseases: A mendelian randomization study. Nutrients. 2019;11(12):1–14.
  57. Wang Y, Tang Y, Ji Y, Xu W, Ullah N, Yu H, et al. Association between FADS1 rs174547 and levels of long-chain PUFA: A meta-analysis. Br J Nutr. 2021;126(8):1121–9.
  58. Yang R, Li L, Seidelmann SB, Shen GQ, Sharma S, Rao S, et al. A genome-wide linkage scan identifies multiple quantitative trait loci for HDL-cholesterol levels in families with premature CAD and MI. J Lipid Res. 2010;51(6):1442–51.
  59. Adkisson PL. A hepatic lipase ( LIPC ) allele associated with high plasma concentrations of high density lipoprotein cholesterol. 1997;94(April):4532–7.
  60. Lubis SM, Fattah M, Batubara JRL. The association between variant rs9939609 in the FTO gene with free leptin index and the risk of obesity in the Indonesian children population. Egypt J Med Hum Genet. 2022;23:108.
  61. Appel M, Zentgraf K, Krüger K, Alack K. Effects of genetic variation on endurance performance, muscle strength, and injury susceptibility in sports: A systematic review. Front Physiol. 2021;12(July):1–18.
  62. Mitra SR, Tan PY, Amini F. Association of ADRB2 rs1042713 with obesity and obesity-related phenotypes and its interaction with dietary fat in modulating glycaemic indices in Malaysian Adults. J Nutr Metab. 2019;2019:1–10.
  63. Chathoth S, Ismail MH, Vatte C, Cyrus C, Al Ali Z, Ahmed KA, et al. Association of Uncoupling Protein 1 (UCP1) gene polymorphism with obesity: a case-control study. BMC Med Genet. 2018;19(1):203.
  64. Corella D, Peloso G, Arnett DK, Demissie S, Cupples LA, Tucker K, et al. APOA2, dietary fat, and body mass index: Replication of a gene-diet interaction in 3 independent populations. Arch Intern Med. 2009;169(20):1897–1906.
  65. Li S, He C, Nie H, Pang Q, Wang R, Zeng Z, et al. G Allele of the rs1801282 polymorphism in PPAR g gene confers an increased risk of obesity and hypercholesterolemia , while t allele of the rs3856806 polymorphism displays a protective role against dyslipidemia : A systematic review and meta-analysis. Front Endocrinol (Lausanne). 2022;13:919087.
  66. Yazdanpanah Z, Mozaffari‐Khosravi H, Mirzaei M, Sheikhha MH, Salehi-Abargouei A. A systematic review and meta-analysis on the association between CD36 rs1761667 polymorphism and cardiometabolic risk factors in adults. Sci Rep. 2022;12(1):1–14.
  67. Melis M, Carta G, Pintus S, Pintus P, Piras CA, Murru E, et al. Polymorphism rs1761667 in the CD36 gene is associated to changes in fatty acid metabolism and circulating endocannabinoid levels distinctively in normal weight and obese subjects. Front Physiol. 2017;8:1006.
  68. Momeni-Moghaddam MA, Asadikaram G, Akbari H, et al. CD36 gene polymorphism rs1761667 (G > A) is associated with hypertension and coronary artery disease in an Iranian population. BMC Cardiovasc Disord. 2019;19(1):1–9.
  69. Holla LI, Borilova Linhartova P, Lucanova S, Kastovsky J, Musilova K, Bartosova M, et al. GLUT2 and TAS1R2 polymorphisms and susceptibility to dental caries. Caries Res 2015;49(4):417–24.
  70. Yu K, Li L, Zhang L, Guo L, Wang C. Association between MC4R rs17782313 genotype and obesity: A meta-analysis. Gene. 2020;733:144372.
  71. Karnik MS, Wang L, Barch DM, Morris JC, Csernansky JG. BDNF polymorphism rs6265 and hippocampal structure and memory performance in healthy control subjects. Psychiatry Res. 2010;178(2):425–9.
  72. Jenzer H, Sadeghi-Reeves L. Nutrigenomics-associated impacts of nutrients on genes and Enzymes with special consideration of Aromatase. Front Nutr. 2020;7:1–21.
  73. Poetsch MS, Strano A, Guan K. Role of leptin in cardiovascular diseases. Front Endocrinol (Lausanne). 2020;11:1–13.
  74. Houweling PJ, Berman YD, Turner N, Quinlan KGR, Seto JT, Yang N, et al. Exploring the relationship between α-actinin-3 deficiency and obesity in mice and humans. Int J Obes 2017;41(7):1154–7.
  75. Del Coso J, Rodas G, Buil MÁ, Sánchez-Sánchez J, López P, González-Ródenas J, et al. Association of the ACTN3 rs1815739 polymorphism with physical performance and injury incidence in professional women football players. Genes. 2022;13(9):1635.
  76. Bernardez-Pereira S, Santos PCJL, Krieger JE, Mansur AJ, Pereira AC. ACTN3 R577X polymorphism and long-term survival in patients with chronic heart failure. BMC Cardiovasc Disord. 2014;14:1–5.
  77. Gutiérrez-Hellín J, Baltazar-Martins G, Aguilar-Navarro M, Ruiz-Moreno C, Oliván J, Del Coso J. Effect of actn3 r577x genotype on injury epidemiology in elite endurance runners. Genes (Basel). 2021;12(1):1–9.
  78. Ahmetov II, Kulemin NA, Popov D, Naumov V, Akimov E, Bravy Y, et al. Genome-wide association study identifies three novel genetic markers associated with elite endurance performance. Biol Sport 2015;32(1):3–9.
  79. Xie C, Hua W, Zhao Y, Rui J, Feng J, Chen Y, et al. The ADRB3 rs4994 polymorphism increases risk of childhood and adolescent overweight/obesity for East Asia’s population: an evidence-based meta-analysis. Adipocyte. 2020;9(1):77–86.
  80. Wu F, Xiao A, Zhang J, Gu XQ, Lee Wl, Kauffman K, et al. SARS-CoV-2 titers in wastewater are higher than expected from clinically confirmed cases. Msystems. 2020;5(4):1110-28.
  81. Qi T, Xu FEI, Yan X, Li S, Li H. Sulforaphane exerts anti-inflammatory effects against lipopolysaccharide-induced acute lung injury in mice through the Nrf2 / ARE pathway. International Journal of Molecular Medicine. 2015;37(1):182–8.
  82. Lv F, Ma Y, Zhang Y, Li Z. Relationship between GSTP1 rs1695 gene polymorphism and myelosuppression induced by platinum-based drugs: A meta-analysis. Int J Biol Markers. 2018;33(4):364–71.
  83. Kolić I, Stojković L, Stankovic A, Stefanović M, Dinčić E, Zivkovic M. Association study of rs7799039, rs1137101 and rs8192678 gene variants with disease susceptibility/severity and corresponding LEP, LEPR and PGC1A gene expression in multiple sclerosis. Gene. 2021;774:145422.
  84. North KN, Beggs AH. Deficiency of a skeletal muscle isoform of α-actinin (α-actinin-3) in merosin-positive congenital muscular dystrophy. Neuromuscul Disord. 1996;6(4):229–35.
  85. Yang N, Schindeler A, McDonald MM, Seto JT, Houweling PJ, Lek M, et al. α-Actinin-3 deficiency is associated with reduced bone mass in human and mouse. Bone. 2011;49(4):790–8.
  86. Hogarth MW, Garton FC, Houweling PJ, Tukiainen T, Lek M, Macarthur DG, et al. Analysis of the ACTN3 heterozygous genotype suggests that α-actinin-3 controls sarcomeric composition and muscle function in a dose-dependent fashion. Hum Mol Genet. 2016;25(5):866–77.
  87. Mir R, Bhat M, Javid J, Jha C, Saxena A, Banu S. Potential impact of COMT-rs4680 G > A gene polymorphism in coronary artery disease. J Cardiovasc Dev Dis. 2018;5(3):38.
  88. Zheng HF, Tobias JH, Duncan E, Evans DM, Eriksson J, Paternoster L, et al. WNT16 influences bone mineral density, cortical bone thickness, bone strength, and osteoporotic fracture risk. PLoS Genet. 2012;8(7): e1002745.
  89. Ye X, Liu X. Wnt16 signaling in bone homeostasis and osteoarthristis. Front Endocrinol (Lausanne). 2022;13:1–11.
  90. Miyamoto-Mikami E, Miyamoto N, Kumagai H, Hirata K, Kikuchi N, Zempo H, et al. COL5A1 rs12722 polymorphism is not associated with passive muscle stiffness and sports-related muscle injury in japanese athletes. BMC Med Genet. 2019;20(1):1–9.
  91. Lv ZT, Gao ST, Cheng P, Liang S, Yu SY, Yang Q, et al. Association between polymorphism rs12722 in COL5A1 and musculoskeletal soft tissue injuries: A systematic review and meta-analysis. Oncotarget. 2018;9(20):15365–74.
  92. Zhetkenev S, Khassan A, Khamzina A, Issanov A, Crape B, Akilzhanova A, et al. Association of rs12722 COL5A1 with pulmonary tuberculosis: a preliminary case-control study in a Kazakhstani population. Mol Biol Rep. 2021;48(1):691–9.
  93. Ana M. Bianco and Víctor J. Yohai. Robust estimation in the logistic regression model. In: In Helmut Rieder, Robust Statistics, Data Analysis, and Computer Intensive Methods, Lecture Notes in Statistics. 1996. p. 17–34. Available from: https://doi.org/10.1007/978-1-4612-2380-1_2 .
  94. Perez Sanchez VM, Angel MC, Judith CV, Diana AC, Patricia VC, Rafael VR, et al. HER-2/neu amplification detected by fluorescence in situ hybridization in touch imprint cytology in comparison with tissue sections. European Journal of Cancer Supplements. 2008;6(7):139.
  95. Carr AC, Shaw GM, Fowler AA, Natarajan R. Ascorbate-dependent vasopressor synthesis: A rationale for vitamin C administration in severe sepsis and septic shock? Crit Care. 2015;19(1):1–8.
  96. Bassett DR, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. / Facteurs limitants de la consommation maximale d’oxygene et determinants de la performance d’endurance. Med Sci Sport Exerc. 2000;32(1):70–84.
  97. NIEMAN DC. Exercise effects on systemic immunity. Immunol Cell Biol. 2000;78(5):496–501.
  98. Scribbans TD, Vescey S, Hankinson PB, Foster WS, Gurd BJ. The effect of training intensity on VO2max in young healthy adults: A meta-regression and meta-analysis. Int J Exerc Sci. 2016;9(2):230–47.
  99. Ragoonanan D. Unanswered questions on the use of hydrocortisone , ascorbic acid , and thiamine therapy in sepsis and septic shock. 2022;79(19):1626–33.
  100. Chudow M, Adams B. ABC’s of vitamin supplementation in critical illness. J Pharm Pract. 2021;34(6):934–42.
  101. Marik PE, Khangoora V, Rivera R, Hooper MH, Catravas J. Hydrocortisone, vitamin C, and thiamine for the treatment of severe sepsis and septic shock: A retrospective before-after study. Chest. 2017;151(6):1229–38.
  102. Iglesias J, Vassallo AV, Patel VV, Sullivan JB, Cavanaugh J, Elbaga Y. Outcomes of metabolic resuscitation using ascorbic acid, thiamine, and glucocorticoids in the early treatment of sepsis: The ORANGES trial. Chest. 2020;158(1):164–73.
  103. Long CL, Maull KI, Krishnan RS, Laws HL, Geiger JW, Borghesi L, et al. Ascorbic acid dynamics in the seriously ill and injured. J Surg Res. 2003;109(2):144–8.
  104. Metnitz PGH, Bartens C, Fischer M, Fridrich P, Steltzer H, Druml W. Antioxidant status in patients with acute respiratory distress syndrome. Intensive Care Med. 1999;25(2):180–5.
  105. Magill SS, Rhodes B, Klompas M. Improving ventilator-associated event surveillance in the national healthcare safety network and addressing knowledge gaps: Update and review. Curr Opin Infect Dis. 2014;27(4):394–400.
  106. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock: 2016. Intensive Care Medicine. 2017;43(3), 304–77.
  107. Nishikimi M, Fukuyama R, Minoshima S, Shimizu N, Yagi K. Cloning and chromosomal mapping of the human nonfunctional gene for L- gulono-γ-lactone oxidase, the enzyme for L-ascorbic acid biosynthesis missing in man. J Biol Chem. 1994;269(18):13685–8.
  108. Lykkesfeldt J, Tveden-Nyborg P. The pharmacokinetics of vitamin C. Nutrients. 2019;11(10):2412.
  109. Li Y, Schellhorn HE. New developments and novel therapeutic perspectives for vitamin C. J Nutr. 2007;137(10):2171–84.
  110. Ohta Y, Nishikimi M. Random nucleotide substitutions in primate nonfunctional gene for L- gulono-γ-lactone oxidase, the missing enzyme in L-ascorbic acid biosynthesis. Biochim Biophys Acta - Gen Subj. 1999;1472(1–2):408–11.

How to Cite

Veterini, A. S., Semedi, B. P., Airlangga, P. S., Rejeki, P. S., Firdaus, K. M., Mutiar, A., Adi, A. C., Sumara, R., & Meirawan, R. F. (2024). Preliminary study: the future insight of relationship between nutrigenomic risk and sepsis. Bali Medical Journal, 13(1), 581–591. https://doi.org/10.15562/bmj.v13i1.4994

HTML
23

Total
4

Share

Search Panel

Anna Surgean Veterini
Google Scholar
Pubmed
BMJ Journal


Bambang Pujo Semedi
Google Scholar
Pubmed
BMJ Journal


Prananda Surya Airlangga
Google Scholar
Pubmed
BMJ Journal


Purwo Sri Rejeki
Google Scholar
Pubmed
BMJ Journal


Khildan Miftahul Firdaus
Google Scholar
Pubmed
BMJ Journal


Airi Mutiar
Google Scholar
Pubmed
BMJ Journal


Annis Catur Adi
Google Scholar
Pubmed
BMJ Journal


Rauzan Sumara
Google Scholar
Pubmed
BMJ Journal


Rizky Fajar Meirawan
Google Scholar
Pubmed
BMJ Journal